LVDT线性可变差动变压器是怎样工作的?
图 1 显示当 LVDT 的纤芯处于不同的轴向位置时会出现什么情况。 LVDT 的初级绕组 P 由恒定振幅交流电源进行通电。由此形成的磁通量由纤芯耦合到相邻的次级绕组 S1 和 S2。如果纤芯位于 S1 和 S2 的中间,则会向每个次级绕组耦合相等的磁通量,因此绕组 S1 和 S2 中各自包含的 E1 和 E2 是相等的。在该参考中间纤芯位置(称为零点),差分电压输出 (E1 - E2) 本质上为零。如图 2 中所示,如果移动纤芯,使其与 S1 的距离小于与 S2 的距离,则耦合到 S1 中的磁通量会增加,而耦合到 S2 中的磁通量会减少,因此感生电压 E1 增大,而 E2 减小,从而产生差分电压 (E1 - E2)。相反,如果纤芯移动得更加靠近 S2,则耦合到 S2 中的磁通量会增加,而耦合到 S1 中的磁通量会减少,因此 E2 增大,而 E1 减小,从而产生差分电压 (E2 - E1)。
图 1:显示当 LVDT 的纤芯处于不同的轴向位置时会出现什么情况。
图3A 显示差分输出电压 EOUT 的大小是如何随着纤芯位置变化的。 自零点开始最大纤芯位移的 EOUT 值取决于初级励磁电压的振幅和特定 LVDT 的敏感因子,但通常为几个伏特 RMS。该交流输出电压 EOUT(以初级励磁电压作为参考)的相位角会保持不变,直到纤芯的中心经过零点,此时该相位角突然改变 180 度,如图 3B 中所示。可以通过相应的电路,使用该 180 度相移来确定纤芯离开零点的方向。图 3C 中对其进行了显示,其中输出信号的极性表示纤芯与零点的位置关系。该图还显示 LVDT 的输出在其指定的纤芯移动范围内具有很好的线性,但可以在更大的范围使用传感器,此时输出线性会有所降低。
图 2:LVDT 的输出特性随纤芯的位置不同而变化。全程输出是一个较大的信号(通常为一伏特或更大),通常不需要放大。请注意,LVDT 会继续在超过 100% 全程的范围运行,但线性会降低。
版权所有:深圳市易测电气有限公司
备案号:粤ICP备19052563号 网站地图